AND WILLIAMS BUT THE PLANS.

# JEM - 2010

MCQ Booklet Number

54926

| Candidate's Full Name |           |
|-----------------------|-----------|
| Enrolment No.:        | Index No. |

(Do not open this MCQ BOOKLET until you are asked to do so)

Subject: PHYSICS AND CHEMISTRY

Maximum Marks: 80 (Each question carries one mark)

#### **IMPORTANT INSTRUCTIONS**

Candidates should read the following instructions carefully and fill in all the required particulars on this Question Booklet and on OMR Answer Sheet before answering the questions:

- (1) The Ouestion Booklet has been sealed. Candidates should open the Question Booklet only when they are asked to do so by the Invigilator.
- (2) The candidates must check that the Question Booklet has 80 questions with multiple choice answers after opening the seal and must report immediately in case of any defect.
- (3) Answers will have to be given on the OMR Answer Sheet supplied for this purpose. Question numbers progress from 1 to 80 with options shown as A, B, C and D.
- (4) OMR Answer Sheets will be processed by electronic means. Hence, invalidation of Answer Sheet resulting due to folding or putting stray marks on it or any damage to the Answer Sheet as well as incomplete/incorrect filling of the Answer Sheet, will be the sole responsibility of the Candidate.
- (5) Use Black/Blue Ball Pen to mark your answers.
- (6) While answering, choose only the Correct/Best option from the four choices given in the question and mark the same in the corresponding circle in the Answer Sheet only. Answers without any response shall be awarded zero mark. Wrong response or more than one response shall be treated as incorrect answer. For every incorrect answer one-third (1/3) mark of the Question will be deducted.
- (7) Darken with Black/Blue Ball Pen completely only one option which you think correct as shown in the figure below:

CORRECT METHOD

WRONG METHODS



- (8) Mark the answers only in the space provided. Please do not make any stray marks on the OMR Answer Sheet.
- (9) Rough work may be done on the blank space in the Question Booklet and space provided for rough work in the answer sheet of descriptive type question.
- (10) Please hand over the OMR Answer Sheet to the Invigilator before leaving the Examination Hall.

YOU CAN TAKE BACK THIS QUESTION BOOKLET AFTER COMPLETION OF EXAMINATION



### SPACE FOR ROUGH WORK

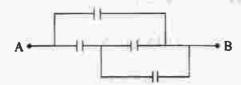
State of the VI VX reguest that the said vičislim. Approximation of the State of Control of the same and the Appetite an inter-thereto with the THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. y the materials are prongress of the file of the file of the companion and the first have been also true. and other property of the contract of the Property of the State of the Contract of the Contrac and the state of t The state of the s that the west or management around the second fields in a continuous past thanks a west filtered to The state of the s manuscript of the property of the configuration of or the common way could be seen and the could be seen as the could be se the first of the party of the second of the Departure on the same Of other they are proportions assume that they are supply They are not reprise to exhibit the seal of the ONSTRUM FIRMING C 5, D 8 16 y = 0 TOTAL THE RESERVED TO THE SERVED TO



The same that the street and the same of the same the same of the

which will be the state of the

# MULTIPLE CHOICE QUESTIONS

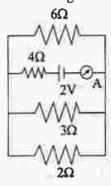

### **PHYSICS**

### (English Version)

| 1.5 |        | mental investigation ible region. Estima     |                       |                     |                         |                     |             | a wavelength 480 nm in 2.88×10 <sup>-3</sup> mK |
|-----|--------|----------------------------------------------|-----------------------|---------------------|-------------------------|---------------------|-------------|-------------------------------------------------|
|     | A.     | 4000 K                                       | B.                    | 6000 K              | C.                      | 8000 K              | D.          | 10 <sup>6</sup> K                               |
| 2.  |        | mperature of an ide<br>olecules is v, then a | t 480 K               | it will be          |                         |                     | 0 K, the ro | oot mean square speed of                        |
|     | A.     | 4ν                                           | B.                    | 2ν                  | C                       | $\frac{v}{2}$       | D           | $\frac{v}{4}$                                   |
| 3   | Two m  |                                              | $	heta^{\circ}$ produ | ce 5 images of a    | point. T                | he number of im     | ages produ  | iced when $\theta$ is decreased                 |
|     | A.     | 9                                            | B.                    | 10                  | C.                      | 11                  | D.          | 12                                              |
| 4_  | The ra | dius of the light cire                       | cle obse              | rved by a fish at a | depth o                 | f 12 meter is (ref  | ractive ind | ex of water = 4/3)                              |
|     | A.     | 36√7                                         | В.                    | $36/\sqrt{7}$       | C.                      | 36√5                | D.          | 4√5                                             |
| 5.  |        | ing's double slit e ive index n, the frim    | -                     |                     | dth is $oldsymbol{eta}$ | . If the entire ar  | Tangemen    | t is placed in a liquid of                      |
| -   | A.     | $n\beta$                                     | В.                    | $\frac{\beta}{n+1}$ | C.                      | $\frac{\beta}{n-1}$ | D,          | $\frac{\beta}{n}$                               |
| 6.  | A plan | o-convex lens (f =                           | 20 cm) i              | is silvered at plan | e surface               | e. Now focal leng   | th will be  | :                                               |
|     | Α.     | 20 cm                                        | В.                    | 40 cm               | C.                      | 30 cm               | D.          | 10 cm                                           |
| 7.: |        | ght beams of inter<br>ities of maxima and    |                       |                     | : 1 are :               | allowed to interf   | ere. What   | will be the ratio of the                        |
|     | A.     | 3:1                                          | В.                    | 4:1                 | C.                      | 25 : 9              |             | 81:1                                            |
| 8,, |        | ne the size of the man e size of the object  | -                     | image and $x_2$ the | size of                 | the diminished in   | nage in Le  | ns Displacement Method,                         |
|     | A.     | $\sqrt{x_1x_2}$                              | В.                    | $x_1x_2$            | C.                      | $x_1^2x_2$          | D.          | $x_1 x_2^2$                                     |
| 9.  | A poir | nt charge +q is plac                         | ed at the             | centre of a cube    | of side I               | . The electric flu  | x emergin   | g from the cube is                              |
|     | A.     | $\frac{q}{t_0}$                              | В.                    | Zero                | C.                      | $6qL^2$             | D.          | $\frac{q}{\sqrt{1+2}}$                          |



10. In the figure below, the capacitance of each capacitor is  $3\mu F$ . The effective capacitance between A and B is:




- A. 3/4μF
- B.  $3\mu F$
- C. 6μF
- D. 5μF

11. n identical droplets are charged to v volt each. If they coalesce to form a single drop, then its potential will be:

- A.  $n^{2/3}v$
- B.  $n^{1/3}$
- C. nv
- D. v/n

12. The reading on the ammeter in the following figure will be



- A. 0.8 A
- B. 0.6 A
- C. 0.4 A D.
- D. 0.2 A

13. An wire of resistance R is elongated n-fold to make a new uniform wire. The resistance of new wire

- A. nR
- B.  $n^2R$
- C. 2nR
- D.  $2n^2R$

14. The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is x. When both the current and radius is doubled the ratio will be

- A. x/8
- B. x/4
- C. x/2
- D. 2x

15. The current through a coil of self inductance L = 2mH is given by  $I = t^2 e^{-t}$  at time t. How long it will take to make the e.m.f zero?

- A. 1s
- В.

- C. 39
- 3s D. 4s

16. The magnetic flux across a loop of resistance  $10\Omega$  is given by  $\phi = 5t^2 - 4t + 1$  Weber. How much current is induced in the loop after 0.2 sec?

- A. 0.4 A
- B. 0.2 A

2s

- C. 0.04 A
- D. 0.02 A

17. The decimal equivalent of the binary number (11010.101)<sub>2</sub> is

- A. 9.625
- B. 25.265
- C. 26.625
- D. 26.265

18. In a common emitter configuration, a transistor has  $\beta = 50$  and input resistance  $1k\Omega$ . If the peak value of a.c. input is 0.01 V then the peak value of collector current is

- Α. 0.01 μΑ
- B.  $0.25 \,\mu A$
- C. 100  $\mu A$
- D. 500  $\mu A$



|     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | ay will be                                                                  |
|-----|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
|     | A.                                                           | 20 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В.                                                                   | 30 min                                                                                                                                                                           | C. 🖽                                                                                | 40 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D.                                                  | 25 min.                                                                     |
| 20, | The e                                                        | ed to produce 3.2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V of pov                                                             | ver is (Take 1eV =                                                                                                                                                               | 1.6×10                                                                              | <sup>-19</sup> J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | er of fissions per second                                                   |
|     | A.                                                           | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B.                                                                   | 10 <sup>10</sup>                                                                                                                                                                 | C.                                                                                  | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.                                                  | 1011                                                                        |
| 21. |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | d u m/s at an ang energy. The value                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The kin                                             | etic energy at the highest                                                  |
|     | A.                                                           | 30°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B.                                                                   | 45°                                                                                                                                                                              | C.                                                                                  | 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D.                                                  | 120°                                                                        |
| 22. |                                                              | is projected horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                    | vith a velocity of 5                                                                                                                                                             | m/s fro                                                                             | om the top of a bui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lding 19                                            | 0.6 m high. How long will                                                   |
|     | A.                                                           | $\sqrt{2S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В.                                                                   | 2S                                                                                                                                                                               | C.                                                                                  | $\sqrt{3}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D.                                                  | 38                                                                          |
| 23. |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | d the total distance<br>three seconds of its                                                                                                                                     |                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | l of its motion equals the air for                                          |
|     | A.                                                           | 6 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В.                                                                   | 5 S                                                                                                                                                                              | C.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.                                                  | 4 S                                                                         |
| 24. |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | in contact on a frict<br>wo blocks will be:                                                                                                                                      | ionless                                                                             | table. If a force of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3N is a                                             | applied on 2kg block, then                                                  |
|     | 7.7                                                          | 3N 2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g 1 K                                                                | g<br>////////////////////////////////////                                                                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                             |
|     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                             |
|     | A.                                                           | 0 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B.                                                                   | 1 N                                                                                                                                                                              | C.                                                                                  | 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D.                                                  | 3 N                                                                         |
| 25. |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | 1 N<br>%, then kinetic ener                                                                                                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.                                                  | 3 N                                                                         |
| 25. |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.                                                  | 3 N<br>36%                                                                  |
|     | If mor                                                       | mentum is increased 48% of mass 40 kg is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d by 209  B.  climbing                                               | %, then kinetic ener                                                                                                                                                             | gy incr<br>C.<br>a cons                                                             | eases by  40% tant speed. If the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.                                                  | 36% ent of friction between his                                             |
|     | If mor                                                       | mentum is increased 48% of mass 40 kg is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d by 209  B.  climbing                                               | %, then kinetic ener 44% g a vertical pole at                                                                                                                                    | gy incr<br>C.<br>a cons                                                             | eases by  40% tant speed. If the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.                                                  | 36% ent of friction between his                                             |
|     | If mor<br>A.<br>A boy<br>palms<br>A.                         | mentum is increased 48% of mass 40 kg is and the pole is 0.8 300N value of 'λ' for whether the same of 'λ' for wh | B.  climbing and g=1  B.                                             | %, then kinetic ener $44\%$ g a vertical pole at $10m/s^2$ , the horizon $400N$                                                                                                  | gy incr<br>C.<br>a cons<br>ntal for<br>C.                                           | eases by  40%  tant speed. If the concept that he is applying the speed the speed that he is applying the speed that he is app | D.<br>coefficieng on the                            | 36% ent of friction between his e pole is                                   |
| 26, | If more A.  A boy palms A.  The vother                       | mentum is increased 48% of mass 40 kg is and the pole is 0.8 300N value of '\lambda' for whis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B. climbing and g=1 B. chich the                                     | %, then kinetic ener $44\%$ g a vertical pole at $10m/s^2$ , the horizon $400N$                                                                                                  | gy incr<br>C.<br>a constant for<br>C.<br>$\hat{i} + \lambda j$                      | eases by $40\%$ tant speed. If the concept that he is applying the speed of the concept that the concept tha | D. coefficieng on the D. $2\hat{j} + \hat{k}$       | 36% ent of friction between his e pole is 600N are perpendicular to each    |
| 26, | If more A.  A boy palms A.  The vother A.                    | mentum is increased 48% of mass 40 kg is and the pole is 0.8 300N value of '\(\lambda'\) for whis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B. climbing and g=1 B. chich the                                     | %, then kinetic enery 44%  g a vertical pole at $10m / s^2$ , the horizon 400N  two vectors $\hat{a} = 5$                                                                        | gy incr<br>C.<br>a constant for<br>C.<br>$\hat{i} + \lambda j$<br>C.                | eases by  40%  tant speed. If the concentration that he is applying the speed of t  | D. coefficieng on the D. $2\hat{j} + \hat{k}$ D.    | 36% ent of friction between his e pole is 600N are perpendicular to each    |
| 26, | If more A.  A boy palms A.  The vother A.                    | mentum is increased 48% of mass 40 kg is and the pole is 0.8 300N value of '\(\lambda'\) for whis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B. climbing and g=1 B. chich the                                     | %, then kinetic energy 44%  g a vertical pole at $10m / s^2$ , the horizon 400N  two vectors $\hat{a} = 5$                                                                       | gy incr<br>C.<br>a constant for<br>C.<br>$\hat{i} + \lambda j$<br>C.                | eases by  40%  tant speed. If the concentration that he is applying the speed of t  | D. coefficieng on the D. $2\hat{j} + \hat{k}$ D.    | 36% ent of friction between his e pole is 600N are perpendicular to each    |
| 26, | If more A.  A boy palms A.  The vother A.  If $\bar{a}$ + A. | mentum is increased 48% of mass 40 kg is and the pole is 0.8 300N value of ' $\lambda$ ' for whis $2$ $\bar{b} = \bar{c}$ and $a + b = 400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B.  climbing and g=1  B.  chich the  B.  c, then the  b.  cove the e | %, then kinetic enery 44%  g a vertical pole at $10m / s^2$ , the horizon 400N  two vectors $\hat{a} = 5$ -2  the angle included by 180°  earth's surface at where $\frac{1}{4}$ | gy incr<br>C.<br>a constal for<br>C.<br>$\hat{i} + \lambda j$<br>C.<br>etween<br>C. | eases by $40\%$ tant speed. If the concept that he is applying $\hat{b}$ and $\hat{b} = \hat{i} - \hat{a}$ and $\bar{a}$ and $\bar{b}$ is $120^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D. coefficieng on the D. $2\hat{j} + \hat{k}$ D. D. | 36% ent of friction between his e pole is 600N are perpendicular to each -3 |



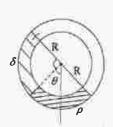
30. The change in the gravitational potential energy when a body of mass m is raised to a height nR above the surface of the earth is (here R is the radius of the earth)

A.  $\left(\frac{n}{n+1}\right) mgR$  B.  $\left(\frac{n}{n-1}\right) mgR$  C. nmgR D.  $\frac{mgR}{n}$ 

31. A particle of mass m is attached to three identical massless springs of spring constant 'k' as shown in the figure. The time period of vertical oscillation of the particle is



B.  $2\pi\sqrt{\frac{m}{2k}}$  C.  $2\pi\sqrt{\frac{m}{3k}}$  D.  $\pi\sqrt{m/k}$ 


32. A spring of force constant k is cut into three equal parts. The force constant of each part would be

B. 3k C. k D.

33. A body floats in water with 40% of its volume outside water. When the same body floats in oil, 60% of its volume remains outside oil. The relative density of the oil is

A.

34. A uniform long tube is bent into a circle of radius R and it lies in a vertical plane. Two liquids of same volume but densities  $\rho$  and  $\delta$  fill half the tube. The angle  $\theta$  is



B.  $\tan^{-1} \rho / \delta$  C.  $\tan^{-1} \delta / \rho$  D.  $\tan^{-1} \frac{\rho + \delta}{\rho - \delta}$ 

35. Two solid spheres of same metal but of mass M and 8 M fall simultaneously on a viscous liquid and their terminal velocities are v and nv then value of n is

A. 16

B.

C.

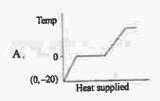
2 D.

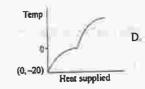
36. A particle is executing linear simple harmonic motion of amplitude A. At what displacement is the energy of the particle half potential and half kinetic?

B.  $\frac{A}{2}$  C.  $\frac{A}{\sqrt{2}}$  D.  $\frac{A}{\sqrt{3}}$ 

37. The equation of a progressive wave is  $y = 4\sin(4\pi t - 0.04x + \pi/3)$  where x is in meter and t is in second. The velocity of the wave is

 $100\pi m/s$ A.


 $50\pi m/s$ B.


C.  $25\pi m/s$  D.  $\pi m/s$ 

The state of the s 38. A longitudinal wave is represented by  $x = x_0 \sin 2\pi (nt - x/\lambda)$ . The maximum particle velocity will be four times the wave velocity if:

 $\lambda = \frac{\pi x_0}{4}$  B.  $\lambda = 2\pi x_0$  C.  $\lambda = \frac{\pi x_0}{2}$  D.  $\lambda = 4\pi x_0$ 

39. A block of ice at temperature -20° C is slowly heated and converted to steam at 100° C. Which of the following diagram is most appropriate?







40. Two black bodies at temperatures 327° C and 427° C are kept in an evacuated chamber at 27° C. The ratio of their rates of loss of heat are

A. (6/7)

**PHYSICS** 

(Bengali Version)

পরীক্ষা করে দেখা গেছে যে সূর্য-বিকিরণের প্রাবল্য সর্বাপেক্ষা বেশী হচ্ছে দৃশ্যবর্ণালীর 480 nm তরঙ্গ দৈর্ঘ্যে। তাহলে সূর্য-পৃষ্ঠের তাপমাত্রা নির্ধারণ কর। (দেওয়া আছে ওয়েনের ধ্রুবক  $b=2.88\times10^{-3}~{
m mK}$ )

A. 4000 K

6000 K B.

8000 K D. 10<sup>6</sup> K

একটি অফুর্শ গ্যাসের তাপমাত্রা 120 K থেকে বাড়িয়ে 480 K করা হল। যদি 120 K তাপমাত্রায় মূল গড় বর্গবেগ v হয় তাহলে 480 K তাঁপমাত্রায় মূল গড় বর্গবেগ হবে

4v A.

2vB.

 $\mathbf{D}_{\perp}$ 

hetaকোণে আনত দৃটি দর্পণ একটি বিন্দুর 5 টি প্রতিবিশ্ব উৎপন্ন করে। hetaথেকে heta  $-30^\circ$  কমালে উৎপন্ন প্রতিবিন্দের সংখ্যা

A.

10 B.

C. 11

12 D.

4. 12 মিটার গভীর জলাশয়ের তলদেশ থেকে একটি মাছ উর্ধ্বমুখে যে আলোক বৃত্ত দেখে তার ব্যাসার্ধ মিটার এককে (জলের প্রতিসরাংক = 4/3)

B  $36/\sqrt{7}$  C.  $36\sqrt{5}$  D.  $4\sqrt{5}$ 

5. ইয়ং-র যুগ্ম রেখাছিদ্র পরীক্ষায় ঝালরের প্রস্থ  $oldsymbol{eta}$ । সমগ্র যন্ত্রটিকে n প্রতিসরাঙ্কের তরলে নিমজ্জিত করলে ঝালরের প্রস্থ হবে

A.  $n\beta$ 

B.  $\frac{\beta}{n+1}$ 

C.  $\frac{\beta}{n-1}$ 

D.  $\frac{\beta}{n}$ 

6. একটি সমোত্তল লেন্সের (f = 20 cm) সমতল পৃষ্ঠে রূপার প্রলেপ দিলে ওর ফোকাস দৈর্ঘ্য হবে

A. 20 cm

B. 40 cm

C. 30 cm

D. 10 cm

7. 9:1 অনুপাতের তীব্রতাসম্পন্ন দুটি আলোক তরঙ্গ ব্যতিচার সৃষ্টি করে। সর্বোচ্চ ও সর্বনিম্ন তীব্রতার অনুপাত হবে

A. 3:1

B. 4:1

C. 25:9

D. 81:

8. লেন্সের সরণ-পদ্ধতিতে যদি বস্তুর বিবর্ধিত ও হ্রাসপ্রাপ্ত প্রতিবিম্বের আকার যথাক্রমে  $x_1$  ও  $x_2$  হয়, তবে বস্তুর প্রকৃত আকার হবে

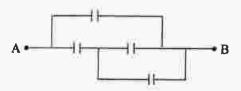
A.  $\sqrt{x_1x_2}$ 

B.  $x_1x_2$ 

C.  $x_1^2 x_2$ 

D.  $x_1x_2$ 

9. একটি আধান বিন্দু যার আধান +q একটি ঘনকের কেন্দ্রে রাখা আছে। ঘনকের পার্শ্বের দৈর্ঘ্য L। ঘনকের মধ্যে থেকে যে বৈদ্যুতিক ফ্লাক্স্ বেরোবে তার মান হল


A.  $\frac{q}{t_0}$ 

B. Zero

 $C_1 = \frac{6qL^2}{t_0}$ 

D.  $\frac{q}{6L^2t_0}$ 

10. নিম্নে বর্ণিত চিত্রে প্রতিটি ধারকের ধারকত্ব  $3\mu F + A$  ও B বিন্দুর মধ্যে কার্যকর ধারকত্ব হবে



A. 3/4μF

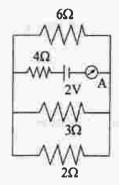
B. 3μF

С. 6*µ*F

D. 5μF

11. একই রকমের n বিন্দুর প্রতিটি v volt -এ আহিত করে একটি বড় বিন্দুতে পরিণত করলে, বড় বিন্দুর বিভব হবে

control of the contro


A.  $n^{2/3}v$ 

B.  $n^{1/3}v$ 

C. nv

D. ν/ι

12. নিম্নলিখিত চিত্রে অ্যামমিটারের পাঠ হবে



A. 0.8 A

B. 0.6 A

C. 0.4 A

the first of the profit with a property

D. 0.2 A

13. R -রোধের একটি তারকে টেনে n শুণ দৈর্ঘ্যের সুষম তারে রূপান্তরিত করা হল। এই তারের রোধ

A. nR

 $B_{\bullet} n^2 R$ 

C. 2nR

D.  $2n^2R$ 

| 14. |             | বৃত্তাকার তড়িৎবাহী লু<br>ক দ্বিগুণ করলে অনুপা    |                     |                                            | চীম্বক শ্ৰ<br>।     | ামকের মানের অনুপা                            | ত x । :                  | লুপটির ব্যাসার্ধ ও প্রবাহমাত্রা |
|-----|-------------|---------------------------------------------------|---------------------|--------------------------------------------|---------------------|----------------------------------------------|--------------------------|---------------------------------|
|     | A.          | x/8                                               | B.                  | x / 4                                      | C.                  | x/2                                          | D.                       | 2 <i>x</i>                      |
| 15. | L=2         | mH আবেশাঙ্কের কে                                  | ানো কুড             | নীতে t সময়ে প্ৰবাহমা                      | ত্রা I= t           | <sup>2</sup> e <sup>-।</sup> । কতক্ষণ বাদে ত | ড়িৎচাল                  | ক বল শূন্য হবে ?                |
|     | A.          | 1s                                                | B.                  | 2s                                         | C.                  | 3s                                           | D.                       | 4s                              |
| 16. |             | রাধবিশিষ্ট একটি কুলু<br>তড়িৎ প্রবাহের মান        | নীর সঙ্গে           | সংযুক্ত চৌম্বক প্রবারে                     | হর সমী              | করণ $\phi = 5t^2 - 4t +$                     | - 1 ওয়ে                 | বার। 0.2 সেকেন্ডে বর্ত্তনীতে    |
|     | A.          | 0.4 A                                             | B.                  | 0.2 A                                      | C.                  | 0.04 A                                       | D.                       | 0.02 A                          |
| 17. | বাইনা       | র (11010.101)2 সংখ                                | ্যাটির দশ           | মিক মান                                    |                     |                                              |                          |                                 |
|     | A.          | 9.625                                             | В.                  | 25.265                                     | C.                  | 26.625                                       | D.                       | 26.265                          |
| 18. |             | প্রয়োগ করলে সংগ্রাহব                             | চ প্রবাহ <u>ে</u>   | ব শীৰ্ষমান হবে                             |                     |                                              |                          | পুটে 0.01 V শীর্ষমানের a.c.     |
|     | A.          | $0.01~\mu A$                                      | В.                  | $0.25 \mu A$                               | C.                  | 100 μΑ                                       | D.                       | 500 μΑ                          |
| 19. | একটি        | তেজন্ত্রিয় পদার্থের অং                           | জীবন ক              | লি 20 minute   20%                         | હ 809               | % -র বিঘটনের মধ্যক                           | তী সময়                  | 0                               |
|     | A.          | 20 min.                                           | B.                  | 30 min.                                    | C.                  | 40 min.                                      | D.                       | 25 min.                         |
| 20. |             | ইউরেনিয়াম পরমাণুর<br>ল ইউরেনিয়াম পরমাণু         |                     |                                            |                     |                                              | V ক্ষমতা                 | া পাওয়ার জন্য এক সেকেণ্ডে      |
|     | A.          | 10 <sup>7</sup>                                   | B.                  | 1010                                       | C.                  | 1015                                         | D.                       | 1011                            |
| 21. |             | বস্তুকে u m/s বেগে<br>বগের 3/4 অংশ। βএ            |                     |                                            | 3 কোণে              | । ছোঁড়া হইল। সর্বে                          | চিচ বিন্দু               | তে গতিশক্তি হবে, প্রারম্ভিক     |
|     | A.          | 30°                                               | B.                  | 45°                                        | C.                  | 60°                                          | D.                       | 120°                            |
| 22. |             | বলকে 19.6 m উচ্চত<br>চকত সময় নেবে?               | তা বিশিষ্ট          | কোনও বাড়ীর ওপর                            | থেকে ব              | সনুভূমিক দিকে 5 m/:                          | s গতিবে                  | গে ছোঁড়া হল। বলটি মাটিতে       |
|     | A.          | $\sqrt{2S}$                                       | В.                  | 2S                                         | C.                  | $\sqrt{3}S$                                  | D.                       | 3\$                             |
| 23. | একটি<br>শেষ | প্রস্তরকে স্থিতাবস্থা গে<br>1 সেকেণ্ডে অতিক্রান্ত | থকে নীয়ে<br>পথের স | চ ছেড়ে দেওয়া হল।<br>ঙ্গে সমান।তাহলে প্ৰভ | তার গণি<br>ধরটির শ্ | তকালের প্রথম তিন (<br>াুন্যে অবস্থানের মোট   | সেকে <b>ণ্ডে</b><br>সময় | সে যা পথ অতিক্রম করে তা         |
|     | A.          | 6 সেকেণ্ড                                         | B.                  | 5 সেকেণ্ড                                  | C.                  | 7 সেকেণ্ড                                    | D.                       | 4 সেকেণ্ড                       |
| 24. |             | ঘর্ষণহীন টেবিলে 2<br>র মধ্যে সংস্পর্শ জনিত        |                     |                                            | ক সংস্              | পর্শে রয়েছে। যদি 2k্                        | g ব্লকে 3                | N বল প্রয়োগ করা হয় তাহলে      |
| 7   | -           | 3N 2 Kg                                           | 1 Kg                |                                            |                     |                                              |                          |                                 |
|     | A.          | 0 N                                               | В.                  | 1 N                                        | C.                  | 2 N                                          | D.                       | 3 N                             |

(9)



| 25  | . যদি ভ                       | তরবেগ 20% বৃ                      | দ্ধি হয় তাহলে গ                   | াতিশক্তি বৃদ্ধি গ                | <b>গাবে</b>                      |                           |                       |                |                     |                      |
|-----|-------------------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|---------------------------|-----------------------|----------------|---------------------|----------------------|
|     | A.                            | 48%                               | В.                                 |                                  | C.                               |                           |                       |                |                     |                      |
| 26  | - 40 k <sub>i</sub><br>গুণায় | g ওজন সম্পন্ন<br>5 0.8 এবং g =    | একটি বালক এ<br>10m/s² হয় তা       | াকটি স্তম্ভ বরা<br>হলে বালকটি    | বর উল্লম্বদিকে<br>স্তম্ভের উপর ত | স্থিরগতিতে<br>ানুভূমিক দি | উঠছে। য<br>ক কি বল গু | দ বাল<br>খয়োগ | কটির তালুর<br>করছে? | সঙ্গে স্তত্তের ঘর্ষণ |
|     | A.                            | 300N                              | B.                                 | 400N                             | C.                               | 500N                      |                       | D.             | 600N                |                      |
| 27. | দুটি তে                       | ভক্টর $\hat{a}=5\hat{i}$ -        | $+\lambda\hat{j}+\hat{k}$ এবং      | $\hat{b} = \hat{i} - 2\hat{j} +$ | <i>k</i> পরস্পরের                | উপর লম্ব <i>হ</i> া       | লে ' <i>ম</i> 'এর     | মান            |                     |                      |
|     | A.                            | 2                                 | B.                                 | -2                               |                                  | 3                         |                       |                |                     |                      |
| 28. | যদি $\bar{a}$                 | $+ar{b}=ar{c}$ এবং                | a + b = c হয়, গ                   | হবে ā এবং <i>ট</i>               | -এর মধ্যবর্তী                    |                           |                       |                |                     |                      |
|     | A.                            | 90°                               | В.                                 | 180°                             | C.                               | 120°                      |                       | D.             | Zero                | 14                   |
| 29. | ALL IC                        | পৃথিবীর ব্যাস<br>1% হবে?          | াব হয় তাহলে                       | পৃথিবীর পৃষ্ঠত                   | ন থেকে কোন                       | উচ্চতায় ত                | ভিকৰ্ষজ ত্ব           | রণের           | মান তার প্          | খিবীর পৃষ্ঠতলের      |
|     | A.                            | 8R                                | В.                                 | 9R                               | C.                               |                           |                       | D              | 200                 |                      |
| 30. | একটি<br>মহাকর্ষ               | m ভর সম্পন্ন<br>য়ি স্থিতিশক্তিতে |                                    | পৃষ্ঠ থেকে nR                    |                                  | না হল, সেং                | ানে <i>R</i> হয়ে     | ছ পৃথি         | থবীর ব্যাসার্ধ      | । তাহলে বস্তুটির     |
|     | A.                            | $\left(\frac{n}{n+1}\right) mgR$  | В.                                 | $\left(\frac{n}{n-1}\right) mgR$ | C. 11                            | nmgR                      | n di i                | D.             | mgR<br>n            |                      |
| 31. | 'k' স্প্ৰী<br>ওই কণ           | ং ধ্রুবক এবং এ<br>ার উলম্ব কম্পা  | একই প্রকারের বি<br>নের পর্যায় কাল | <b>ইনটি ভরহীন</b> <sup>স</sup>   | প্থীং কে একটি                    | কণা যার ভ                 | র 'm' তা              | ৰ সাৎে         | া চিত্রানুসারে      | লাগানো আছে।          |
|     | 10                            | 900                               |                                    |                                  |                                  |                           |                       |                |                     |                      |
|     |                               | 1350                              |                                    |                                  |                                  |                           |                       |                |                     |                      |
|     |                               |                                   |                                    |                                  |                                  |                           |                       |                |                     |                      |
|     | A.                            | $2\pi\sqrt{m/k}$                  | B.                                 | $2\pi\sqrt{\frac{m}{2k}}$        | C.                               | $2\pi\sqrt{\frac{m}{3k}}$ | I                     | ), =           | $\pi\sqrt{m/k}$     |                      |
| 32. |                               |                                   | কে তিনটি সমান                      |                                  |                                  |                           |                       |                | part.               |                      |

33. একটি বস্তু তার আয়তনের 40% জলের বাইরে রেখে জলে ভাসমান অবস্থায় থাকে। বস্তুটি যখন কোনও তৈল পদার্থে ভাসে তখন তার আয়তনের 60% তৈলের বাইরে থাকে। তাহলে তৈল পদার্থটির আপেক্ষিক ঘনত্ব হল

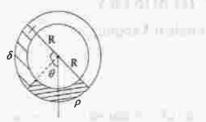
A. 0.9

A.

71 1 9 800

B. 1.2

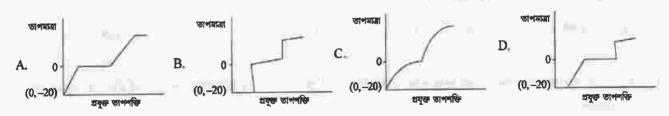
3k


B.

C. 1.5

D. 1.8

C. k D. 2k


34. একটি লম্বা নলকে চিত্র-বর্ণীত R ব্যাসার্ধের বৃত্তাকার করে উল্লম্বতলে রাখা হল। দুইটি একই আয়তন কিন্তু ho এবং ho ঘনত্ব যুক্ত তরল দিয়ে ওই নলের অর্ধেক পূর্ণ করা হলে 🛭 এর মান FRITALIN DE L



- $\tan^{-1}\left(\frac{\rho-\delta}{\rho+\delta}\right)$  B.  $\tan^{-1}\rho/\delta$  C.  $\tan^{-1}\delta/\rho$  D.  $\tan^{-1}\frac{\rho+\delta}{\rho-\delta}$
- 35 M এবং 8 M ভরের একই ধাতুর দুটি নিরেট গোলককে একই সাথে একটি সান্দ্রতাযুক্ত তরলে ফেললে ওদের প্রান্তিক বেগ v এবং nv হয়। তবে n এর মান
  - 16 A.
- B.
- D. 2
- 36. একটি বস্তুর সরলরেখায় সরল সমঞ্জস গতির বিস্তার হল A; গতির কেন্দ্র থেকে কত দূরত্বে বস্তুটির শক্তি অর্ধেক স্থিতিশক্তি এবং অধৈক গাওশাক্ত হবে ?  $A. \quad \frac{A}{4} \qquad \qquad B. \quad \frac{A}{2} \qquad \qquad C. \quad \frac{A}{\sqrt{2}} \qquad \qquad D. \quad \frac{A}{\sqrt{3}}$

- 37 কোনো ক্রমবর্ধিত তরঙ্গের সমীকরণ  $y=4\sin(4\pi\,t-0.04x+\pi\,l\,3)$  যেখানে x মিটারে এবং t সেকেণ্ডে প্রকাশিত। তরঙ্গের বেগ
  - $100\pi m/s$ A.
- $50\pi m/s$ B.
- C.  $25\pi \ m/s$  D.  $\pi \ m/s$
- 38 একটি অনুদৈর্ঘ্য তরঙ্গ নিম্নলিখিত সম্পর্ক মেনে চলে  $x=x_0\sin 2\pi(nt-x/\lambda)$ । সর্ব্বোচ্চ কণার বেগ তরঙ্গের বেগের চারগুণ হবে যদি

- $\lambda = \frac{\pi x_0}{4}$  B.  $\lambda = 2\pi x_0$  C.  $\lambda = \frac{\pi x_0}{2}$  D.  $\lambda = 4\pi x_0$
- 39. –20° সেন্টিগ্রেড তাপমাত্রার একখন্ড বরফকে তাপ প্রয়োগে ধীরে ধীরে 100° C তাপমাত্রায় বাম্পে পরিণত করা হল। যে লেখচিত্রটি এই ঘটনাকে সর্ব্বাপেক্ষা সূচারুভাবে প্রকাশ করে সেটি হল



- 40. সম্পূর্ণরূপে বায়ু নিষ্কাশিত 27° C তাপমাত্রায় প্রকোষ্ঠে দুটি কৃষ্ণ বস্তুকে যাদের তাপমাত্রা যথাক্রমে 327° C ও 427° C রাখা হয় তাহলে বস্তুদ্বয় দ্বারা তাপাঙ্ক হারের অনুপাত হবে
  - (6/7)A.

- B.  $(6/7)^2$  C.  $(6/7)^3$  D.  $\frac{243}{464}$

# **MULTIPLE CHOICE QUESTIONS CHEMISTRY**

(English Version)

| 41, | At identical temperature and pressure, the rate of diffusion of hydrogen gas is $3\sqrt{3}$ times that of a hydrocarbon |
|-----|-------------------------------------------------------------------------------------------------------------------------|
|     | having molecular formula C <sub>n</sub> H <sub>2n-2</sub> . What is the value of 'n'?                                   |

A.

- B.
- C.
- D.

- A. 1.5 D
- B. 2.25 D
- 1D

- 43. Which of the following thermodynamic relation is correct?
  - - dG = VdP SdT B. dE = PdV + TdS
- C. dH = -VdP + TdS
- D. dG = VdP + SdT

- Molecularity and order of reaction both are 2
- B. Molecularity is 2 but order of reaction is 1
- C. Molecularity is 1 but order of reaction is 2
- D. Molecularity is 1 and order of reaction is also 1

45. The potential of a hydrogen electrode at 
$$pH = 10$$
 is

- A. 0.59 V
- B.  $0.00 \, V$
- C. -0.59 V
- D. -0.059 V

46. Calculate 
$$K_c$$
 for the reversible process given below if  $K_p = 167$  and  $T = 800^{\circ}$  C.

$$CaCO_3(S)$$
  $\subset$   $CaO(S)+CO_2(g)$ 

- A. 1.95
- B. 1.85
- 1.89
- D. 1.60

### 47. For a reversible chemical reaction where the forward process is exothermic, which of the following statements is correct?

- A. The backward reaction has higher activation energy than the forward reaction
- B. The backward and the forward processes have the same activation energy
- C. The backward reaction has lower activation energy
- D. No activation energy is required at all since energy is liberated in the process.

| 10          | In Co.       |                                | e                    | . ــ د داد هم                     |          |                                                                 |             |                                                            | •              |
|-------------|--------------|--------------------------------|----------------------|-----------------------------------|----------|-----------------------------------------------------------------|-------------|------------------------------------------------------------|----------------|
| 48.         | In Soi<br>A. | a perfect ellipse              |                      | of Bohr's theory, th              | e trajec | tory of an electro                                              | n in a hy   | drogen atom is                                             |                |
|             | В.           |                                |                      | urve narrower at th               | e norih  | elion nosition on                                               | l flattar a | the aphelion position                                      |                |
|             | C.           | a closed loop or               | n a spher            | rical surface                     | e berm   | enon position and                                               | matter a    | the aphellon position                                      | 'n             |
|             | D.           | a rosette                      |                      |                                   |          |                                                                 |             |                                                            |                |
| 40          | T 41         |                                | 41.1                 |                                   |          |                                                                 |             | 4                                                          |                |
| 49          |              |                                | m thiost             | ilphate with I <sub>2</sub> in ac | queous   | medium the equi                                                 | valent we   | ight of sodium thios                                       | ulphat         |
|             | is equa      | at to<br>molar mass of s       | odium ti             | hiosulahata                       | В        | the everes of                                                   | 1           | one of No. C. O.                                           | 1.7            |
|             | C.           |                                |                      | odium thiosulphate                |          |                                                                 |             | isses of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> and | 1 <sub>2</sub> |
|             | C.           | nan die morai i                | 11455 01 5           | odium unosuipnate                 | D.       | molar mass of                                                   | soaium t    | nosulphate × 2                                             |                |
| 50.         | 0.1 (M       | I) HCl and 0.1 (N              | A) H <sub>2</sub> SC | 4, each of volume                 | 2ml are  | e mixed and the v                                               | olume is    | made up to 6 ml by                                         | adding         |
|             |              |                                |                      | The pH of the resu                |          |                                                                 |             |                                                            |                |
|             | A.           | 1.17                           | В.                   | 1.0                               | C.       | 0.3                                                             | D.          | log 2 - log 3                                              |                |
| 51.         | The m        | olarity of a NaOl              | H solutio            | on by dissolving 4 g              | of it i  | n 250 ml water is                                               |             |                                                            |                |
|             | A.           | 0.4 M                          | В.                   | 0.8 M                             | C.       | 0.2 M                                                           | D.          | 0.1 M                                                      |                |
|             | T.C.         |                                |                      |                                   |          |                                                                 |             |                                                            |                |
| 52.         |              |                                |                      | lectrons and 16 neu               |          |                                                                 | nd its cha  |                                                            |                |
|             | A.           | S <sup>1-</sup>                | B.                   | Si <sup>2-</sup>                  | C.       | P <sup>3-</sup>                                                 | D.          | S <sup>2-</sup>                                            |                |
| <b>5</b> 3. | In a pe      | riodic table the b             | asic cha             | racter of oxides                  |          |                                                                 |             |                                                            |                |
|             | A.           | increases from l               | eft to rig           | tht and decreases fro             | om top   | to bottom                                                       |             |                                                            |                |
|             | B.           | decreases from                 | right to l           | eft and increases fro             | om top   | to bottom                                                       |             | 1 17                                                       |                |
|             | C.           | decreases from                 | left to rig          | ght and increases fro             | om top   | to bottom —                                                     |             |                                                            |                |
|             | D.           | decreases from                 | left to rig          | ght and increases fro             | om bot   | tom to top                                                      |             |                                                            |                |
| 54.         | Which        | one of the follow              | ving con             | tains P-O-P bond ?                | ,        |                                                                 |             |                                                            |                |
|             | A.           | Hypophosphoru                  |                      |                                   | В.       | Phosphorus aci                                                  | d           |                                                            |                |
|             | C.           | Pyrophosphoric                 |                      |                                   | D.       | Orthophosphor                                                   |             |                                                            |                |
| <i></i>     | 3175.1.1.    | - F 41 F - 11 3                | 44                   | 1 111                             |          | N 111                                                           |             |                                                            |                |
| oo.<br>=    |              |                                |                      | egarding ionization               |          |                                                                 | _           |                                                            |                |
|             | A.           | N>0>F                          | B.                   | N < O < F                         | - C.     | N>0 <f< td=""><td>D.</td><td>N &lt; O &gt; F</td><td></td></f<> | D.          | N < O > F                                                  |                |
| 56.         | Which        | of the following               | statemer             | nts regarding ozone               | is not   | соптест ?                                                       |             |                                                            |                |
|             | A.           | The Ozone mole                 | eccule is            | angular in shape                  |          |                                                                 |             |                                                            |                |
|             | B.           |                                |                      | e hybrid of two stru              |          |                                                                 |             |                                                            |                |
|             | C.           |                                |                      | nd length in ozone i              |          |                                                                 |             | oxygen                                                     |                |
|             | D.           | Ozone is used as               | s a germi            | icide and disinfecta              | nt for t | he purification of                                              | air.        |                                                            |                |
| 57.         | $P_aO_{10}$  | is the anhydride               | of                   |                                   |          |                                                                 |             |                                                            |                |
|             | A.           | H <sub>3</sub> PO <sub>2</sub> |                      | $H_3PO_3$                         | C        | H <sub>3</sub> PO <sub>4</sub>                                  | D           | $H_4P_2O_7$                                                |                |
|             |              | 32                             |                      | 33                                | 0.       | 3- 04                                                           |             |                                                            |                |
| 58.         | Which        | of the following               | metals h             | as the largest abund              | lance is | n the earth's crust                                             | ?           | 11 11 11                                                   |                |
|             | A.           | Aluminium                      | В.                   | Calcium                           | C.       | Magnesium                                                       | D.          | Sodium                                                     |                |



| - 5        | ). AA TITI          | ICH OLUBE TRANSAKI                                | ng ordinas          | wan make zem ber     | MEDITE            | or imaing the                        | electron in t    | he ye plane?               |         |
|------------|---------------------|---------------------------------------------------|---------------------|----------------------|-------------------|--------------------------------------|------------------|----------------------------|---------|
|            | A.                  | $p_{x}$                                           | В.                  | $p_{y}$              | C.                | $P_z$                                | D.               | - d                        |         |
|            |                     |                                                   |                     |                      |                   | 4 - i                                |                  | yz                         |         |
| 60         | ). Wha              | at type of orbital                                | hybridis <u>ati</u> | on is considered o   | n P in P          | Cl <sub>5</sub> ?                    |                  |                            | 11      |
|            | A.                  | sp <sup>3</sup> d                                 | В.                  | dsp <sup>3</sup>     | C.                | $sp^3d^2$                            | $\mathbf{D}_{+}$ | $d^2sp^3$                  |         |
| <b>Z</b> 1 | East                | makinka da a sa sa                                | -                   | 1 11                 |                   |                                      |                  | - 1                        |         |
| 01         |                     |                                                   |                     | of the electron pa   | ir will r         | ot be observed                       | ?                |                            |         |
|            | A.                  | Sn                                                | В.                  | · Fe                 | - C.              | Pb                                   | D,               | In,                        |         |
| 62         |                     |                                                   | wing molec          | ules is hydrogen t   | oridge b          | ond present?                         |                  |                            |         |
|            | A.                  | Water                                             | B.                  | Inorganic benzene    | 3                 | C. Diborane                          | D.               | Methanol                   |         |
| 63         | . Whe               | en a manganous s<br>1 +2 to                       | alt is fused        | with a mixture of    | KNO <sub>3</sub>  | and solid NaOI                       | ff the oxidat    | ion number of Mn           | changes |
|            | A.                  | +4                                                | В.                  | +3                   | C.                | +6                                   | D.               | +7                         |         |
| 61         | In ho               |                                                   | A-1 *- <sup>1</sup> |                      |                   | 1                                    |                  |                            |         |
| 04.        |                     | emoglobin the me                                  | _                   |                      |                   |                                      |                  |                            |         |
|            | A.                  | Fe <sup>2+</sup>                                  | <b>B</b> .          | Zn <sup>2+</sup>     | C.                | Co <sup>2+</sup>                     | D.               | Cu <sup>2+</sup>           |         |
| 65.        | Ortho               | o- and para-hydro                                 | gens have           |                      |                   |                                      |                  |                            |         |
|            | A.                  | Identical chen                                    | ical prope          | rties but different  | physical          | nonenties:                           |                  |                            |         |
|            | В.                  |                                                   |                     | emical properties.   |                   | · proportios                         |                  |                            |         |
|            | C.                  |                                                   |                     | ties but different c |                   |                                      |                  |                            |         |
|            | D.                  |                                                   |                     | emical properties.   |                   | _                                    |                  |                            |         |
|            |                     | •                                                 |                     |                      |                   |                                      |                  |                            |         |
| 66.        |                     | ond order of CO                                   | molecule            | is                   |                   |                                      | 7 .              |                            |         |
|            | A.                  | 2                                                 | В.                  | 2.5                  | C.                | 3                                    | D.               | 3.5                        |         |
| 67.        | Vitan               | nin C is                                          |                     |                      |                   |                                      |                  |                            |         |
| • • •      | A.                  | Citric acid                                       | 10                  | T and a sold         |                   | _                                    |                  |                            |         |
|            | A'bo                | Citi C acid                                       | В.                  | Lactic acid          | C.                | Paracetamol                          | D.               | Ascorbic acid              |         |
| 68.        | On m                | ixing an alkane v<br>Ikane is                     | vith chlorin        | e and irradiating v  | with ultr         | a-violet light, it                   | forms only       | one mono-chloro-           | alkane. |
|            | A.                  | Propane                                           | В.                  | Pentane              | C.                | Isopentane                           | D.               | Neopentane                 |         |
| 69         | Keto-               | enol tautomerism                                  | in not abo          |                      |                   |                                      |                  |                            |         |
| ω,         | A.                  |                                                   |                     |                      |                   | 2150 01916111                        |                  |                            |         |
|            |                     | C6H5CCC6H5                                        |                     |                      | В,                | C <sub>6</sub> H <sub>5</sub> COCH=0 | CH <sub>2</sub>  |                            |         |
|            | C.                  | C <sub>6</sub> H <sub>5</sub> COCH <sub>2</sub> C | OCH <sub>3</sub>    |                      | D.                | CH <sub>3</sub> COCH <sub>2</sub> C  | OCH <sub>3</sub> |                            |         |
| 70.        | What                | is obtained                                       | when ni             | trobenzene is        | treated           | segmentially                         | with 60          | NH <sub>4</sub> Cl/Zn dust |         |
|            | (ii) H <sub>2</sub> | SO4/NaCt-O7                                       |                     |                      | 2500000           | sequentially                         | wiiii (1)        |                            | and     |
|            | A                   | meta-chloronitr                                   |                     |                      | Tra               |                                      |                  | + H                        |         |
|            | C.                  | nitrosobenzene                                    |                     |                      | В                 | para-chloronitr                      | obenzene         |                            |         |
|            |                     | CONDUCTIONIC                                      |                     |                      | $\mathbf{D}_{ij}$ | benzene                              |                  |                            |         |

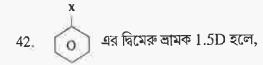


| 71.         | Boiling    | water reacts with                                                                        | C <sub>6</sub> H <sub>5</sub> N  | Cl to give         |          |                                                                     |                    |                            |
|-------------|------------|------------------------------------------------------------------------------------------|----------------------------------|--------------------|----------|---------------------------------------------------------------------|--------------------|----------------------------|
|             | A.         | aniline                                                                                  | B.                               | benzylamine        | C.       | phenol                                                              | D.                 | benzaldehyde               |
|             |            |                                                                                          |                                  | 39 10 10           |          |                                                                     |                    |                            |
| 72.         | Aspirin    | ı is                                                                                     |                                  |                    |          |                                                                     |                    |                            |
|             | A.         | Acetyl salicylic ac                                                                      | id                               |                    | B.       | Benzoyl salicylic                                                   | acid               |                            |
|             | C.         | Chloro benzoic ac                                                                        |                                  |                    | D.       | Anthranilic acid                                                    |                    |                            |
|             |            |                                                                                          |                                  |                    |          |                                                                     |                    |                            |
| 73.         | XPC        | <sup>ll,</sup> →C <sub>2</sub> H <sub>5</sub> Cl<br><sup>ll,</sup> →CH <sub>3</sub> COCl |                                  |                    |          |                                                                     |                    |                            |
|             | X and      | Y are                                                                                    |                                  | B. Tavel           |          |                                                                     |                    |                            |
|             | A.         | (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O and C                                    | H <sub>3</sub> CO <sub>2</sub> H |                    |          | C <sub>2</sub> H <sub>5</sub> I and C <sub>2</sub> H <sub>5</sub> O |                    |                            |
|             | C.         | C <sub>2</sub> H <sub>5</sub> OH and Cl                                                  | I <sub>3</sub> CO <sub>2</sub> H |                    | D.       | C <sub>2</sub> H <sub>5</sub> OH and C <sub>2</sub>                 | H <sub>5</sub> CHO |                            |
| 74.         | Which      | of the following co                                                                      | ompound                          | ls shows evidence  | of the   | strongest hydrogen                                                  | bonding            | ;?                         |
|             |            |                                                                                          |                                  |                    |          |                                                                     |                    | D. Propan-1,2,3-triol      |
|             |            | AgCl is treated wit                                                                      |                                  |                    | - 1      |                                                                     |                    |                            |
| 75.         |            |                                                                                          |                                  |                    | D        | a complex ion is                                                    | formed             |                            |
|             | <b>A</b> . | Ag is precipitated                                                                       | /s                               | ATTACK DE          |          | no reaction takes                                                   |                    |                            |
|             | C.         | double decompos                                                                          | mon tak                          | es piace           | D.       |                                                                     | -                  |                            |
| 76.         | Which      | one of the followi                                                                       | ng is pro                        | duced when acetor  | ne is sa | turated with HCl g                                                  | as?                |                            |
|             | A.         | Acetone alcohol                                                                          |                                  | Phorone            | C.       | Mesityl oxide                                                       |                    | Benzene                    |
|             |            |                                                                                          |                                  |                    |          |                                                                     |                    |                            |
| <b>77</b> . | Which      | one of the followi                                                                       | ng is an                         | example of co-poly | mer?     |                                                                     | 1 111              |                            |
|             | <b>A.</b>  | Buna-S                                                                                   | В.                               | Teflon             | C.       | PVC                                                                 | D.                 | Polypropylene              |
| 70          | Identii    | fy [A] and [B] in th                                                                     | e fallowi                        | ng                 |          |                                                                     |                    |                            |
| 70.         |            |                                                                                          |                                  |                    |          |                                                                     |                    |                            |
|             | 89 A       | $Ac \xrightarrow{-\beta} [A] \xrightarrow{-\alpha}$                                      | →[ <i>B</i> ]—                   |                    |          |                                                                     |                    |                            |
|             | Α.         | Po, Rn                                                                                   | В.                               | Th, Po             | C.       | Ra, Th                                                              | D.                 | Th, Ra                     |
| 79.         | A wea      | rird neutralisation of                                                                   | of the aci                       | d will be          |          |                                                                     |                    | on. The pH at the point of |
|             | A.         | $5 + \log 2 - \log 3$                                                                    | В.                               | 5 - log 2          | C.       | $5 - \log 3$                                                        | D.                 | 5 – log 6                  |
| 80.         | Radio      | activity of a sampl                                                                      | e (z = 22                        | ) decreases 90% a  | iter 10  | years. What will be                                                 | the hal            | f life of the sample?      |
|             | A.         | 5 years                                                                                  | В.                               | 2 years            | C.       | 3 years                                                             | D.                 | 10 years                   |



A,

5 years


### **CHEMISTRY**

### (Bengali Version)

| 41_ | সম উষ্ণতা ও চাপে H <sub>2</sub> গ্যাস, C <sub>n</sub> H <sub>2n-2</sub> | আণবিক সংকেত বিশি | ষ্ট একটি হাইড্রোকার্বনের | তুলনায় 3√3 | গুণ হারে ব্যাপিত হয়। |
|-----|-------------------------------------------------------------------------|------------------|--------------------------|-------------|-----------------------|
|     | 'n' এর মান কত ?                                                         |                  |                          |             |                       |

- A. 1
- R

- C. 3
- D. 8





ু এর দ্বিমেরু ভ্রামক হবে,

- A. 1.5 D
- B. 2.25 D
- C. 1D
- D. 3D

- 43 নিম্নের তাপগতীয় সম্পর্কগুলির মধ্যে কোনটি সঠিক ?
  - A. dG = VdP SdT B.
- dE = PdV + TdS C.
- dH = -VdP + TdS
- D. dG = VdP + SdT
- 44. অত্যধিক বেশী পরিমাণ জলের উপস্থিতিতে একটি জৈব ক্লোরাইডের আদ্রবিশ্লেষণে, RCI+H₂O→ROH+HCI
  - A. বিক্রিয়ার আণবিকতা এবং ক্রম উভয়েই 2
- B. বিক্রিয়ার আণবিকতা 2 কিন্তু ক্রম 1
- C. বিক্রিয়ার আণবিকতা 1 কিন্তু ক্রম 2
- D. বিক্রিয়ার আণবিকতা এবং ক্রম উভয়েই 1
- 45. pH = 10 এ একটি হাইড্রোজেন তড়িৎদ্বারের বিভব
  - A. 0.59 V
- B. 0.00 V
- C. -0.59 V
- D. -0.059 V
- 46. নিম্নলিখিত সাম্যটিতে  $K_c$  -র মান গণনা কর যদি  $K_p$  = 167 এবং T =  $800^o$  C হয়

 $CaCO_3(S) \longrightarrow CaO(S)+CO_2(g)$ 

- A. 1.95
- B. 1.85
- C. 1.89
- D. 1.60

### 47. একটি উভমুখী রাসায়নিক বিক্রিয়ার সম্মুখ বিক্রিয়াটি তাপ উদ্গীরক হ'লে কোনটি ঠিক ?

- A. বিপরীত বিক্রিয়াটির সক্রিয়ন শক্তি সম্মুখ বিক্রিয়ার চেয়ে বেশী হবে।
- B. বিপরীত ও সম্মুখ বিক্রিয়ার সক্রিয়ন শক্তি একই হবে।
- C. বিপরীত বিক্রিয়ার সক্রিয়ন শক্তি সম্মুখ বিক্রিয়ার চেয়ে কম।
- D. কোন সক্রিয়ন শক্তির প্রয়োজন নাই কারণ বিক্রিয়াটিতে শক্তি নির্গত হয়।

## 48. সমারফেল্ড-কৃত বোর তত্ত্বের সংশোধনীতে হাইড্রোজেন পরমাণুর একটি ইলেকট্রনের গতিপথ হয়

- A. একটি নির্ভুল উপবৃত্ত
- B. একটি বন্ধ উপবৃত্তাকার বক্ররেখা, যার একটি দিক (নিউক্লিয়াসের নিকটস্থ দিক) অপেক্ষাকৃত সরু এবং অপরদিক (নিউক্লিয়াসের থেকে দূরের দিক) চওড়া
- C. একটি গোলকের তলে অবস্থিত একটি বদ্ধ লপ
- D. একটি রোজেট

| 49. | জলীয়         | দ্রবণে সোডিয়াম থায়ে                      | সালফে                 | ট ও আয়োডিনের বি                                       | ক্রিয়ায় (               | সাডিয়াম থায়োসালে                                        | ফটের তুর        | ন্যাংকভার হবে     |           |
|-----|---------------|--------------------------------------------|-----------------------|--------------------------------------------------------|---------------------------|-----------------------------------------------------------|-----------------|-------------------|-----------|
|     | A.            |                                            |                       | আণবিক গুরুত্বের সম                                     |                           |                                                           |                 |                   |           |
|     | B.            | সোডিয়াম থায়োসাল                          | ফেট ও                 | I <sub>2</sub> এর আণবিক গুরুত                          | হর গড়                    |                                                           |                 |                   |           |
|     | C.            | সোডিয়াম থায়োসাল                          | ফেটের ত               | ্র<br>আণবিক গুরুত্বের অ                                | র্ধক                      |                                                           |                 |                   |           |
|     | D.            | সোডিয়াম থায়োসাল                          | ফেটের গ               | আণবিক গুরুত্ব x 2                                      |                           |                                                           |                 |                   |           |
| 50  | একটি এ        | 0.1 (M) HCL 470                            | 0.1. <i>(</i> ). ()   |                                                        |                           |                                                           |                 |                   |           |
| 30. | 0.01.0        | 0.1 (M) HCI এবং (<br>N) NaCl দ্রবণ মিশিয়ে | U.1 (M)<br>ਪ੍ਰਤੁਸ਼ਤਿਕ | ) H <sub>2</sub> SO <sub>4</sub> দ্রবণের প্র           | াতাঢ <i>ে</i><br>একিক     | থকৈ 2ml নিয়ে মিট                                         | র্থত করে        | তার মধ্যে 2 m     | া আয়তনের |
|     |               | 1) 11401 211 1411 1411 145                 | I CAID O              | ll 20년 0 IIII 소설 5년                                    | HAC                       | गत्र pH २८५                                               |                 |                   |           |
|     | A.            | 1.17                                       | B.                    | 1.0                                                    | C.                        | 0.3                                                       | D.              | $\log 2 - \log 3$ |           |
| 51. | 4 g Na        | aOH 250 ml জলে দ্র                         | বীভূত ক               | রলে দ্রবণের গ্রাম আ                                    | ণবিকত                     | হবে<br>-                                                  |                 |                   |           |
|     | A.            | 0.4 M                                      | B.                    | 0.8 M                                                  | C.                        | 0.2 M                                                     | D.              | 0.1 M             |           |
| 52  | 16 <b>億</b> 0 | প্রাটন, 18 টি ইলেকট্রন                     | 1 va 1 6 f            | है <u>जितिहा सम्बक्तिक क</u>                           | ਰਕ ਵਾਲੀ                   |                                                           | 2.              | 0.1 1/1           |           |
| J4. | A.            | S <sub>1</sub> .                           | B.                    | ত । <del>ব</del> ভদ্রৰ সন্ধাণাভ বং<br>Si <sup>2-</sup> | রন চাজ<br>C.              | <b>1</b> ୧ ମନା <del>ଡ</del> େଫ୍ୟୁ ଫ୍ୟା<br>P <sup>3-</sup> | -               | S <sup>2-</sup>   |           |
|     |               |                                            |                       |                                                        | C.                        | P                                                         | D.              | 5-                |           |
| 53. | পর্যায় স     | ারণীতে অক্সাইডগুলির                        |                       |                                                        | _                         |                                                           |                 |                   |           |
|     | Α.            | বাম দিক থেকে ডান                           |                       |                                                        |                           |                                                           |                 | A SHEET A         | -         |
|     | B.            | ডান দিক থেকে বাম                           |                       |                                                        |                           | •                                                         |                 |                   |           |
| •   | C.            | বাম দিক থেকে ডান                           |                       |                                                        |                           |                                                           |                 |                   |           |
|     | D.            | বাম দিক থেকে ডান                           | দকে ক                 | ম এবং নীচ থেকে উণ                                      | শরের দি                   | কৈ বাড়ে                                                  |                 |                   |           |
| 54. | নীচের ফ       | াধ্যে কোনটিতে P−O−                         | P বন্ধন               | আছে                                                    |                           |                                                           |                 |                   |           |
|     | A.            | হাইপো ফসফরাস অ্য                           | াসিড                  |                                                        | <b>B</b> ,,               | ফসফরাস অ্যাসিড                                            |                 |                   |           |
|     | C.            | পাইরো ফসফরিক অ্য                           | াসিড                  |                                                        | $\mathbf{D}_{\mathrm{S}}$ | অর্থোফসফরিক অ্যা                                          | সিড             |                   |           |
| 55. | নিম্নলিখি     | ত আয়নন শক্তির ক্রয                        | মগুলির (              | কানটি সঠিক?                                            |                           |                                                           |                 |                   |           |
|     | A.            | N > O > F                                  | B.                    | N < O < F                                              | C.                        | N > 0 < F                                                 | D.              | N < O > F         |           |
| 56. | ওজোন          | <b>সম্প</b> ৰ্কীয় কোন বক্তব্য             | টি সঠিক               | নয় ?                                                  |                           |                                                           |                 |                   |           |
|     | A.            | ওজোন অণুর আকৃতি                            | কৌণিক                 |                                                        | B.                        | ওজোন দুইটি গঠনাব                                          | <b>ৃতি</b> র সং | ত্যান্দ্ৰন        |           |
|     | C.            | ওজোনের অক্সিজেন                            | - অক্সিভে             | ন বন্ধন দূরত্ব                                         | D.                        | ওজোন জীবাণুনাশক                                           | এবং বায়        | ্ পরিশোধক         |           |
|     |               | অক্সিজেন অণুর ঐ ব                          | ন্ধন দূরত             | হ্বর সহিত সমান                                         |                           |                                                           |                 | * al              |           |
| 57. | $P_4O_{10}$   | কোন অ্যাসিডটির নিরু                        | দক ?                  |                                                        |                           | 1                                                         |                 | AT                |           |
|     |               | H <sub>3</sub> PO <sub>2</sub>             |                       | H <sub>3</sub> PO <sub>3</sub>                         | C.                        | H <sub>3</sub> PO <sub>4</sub>                            | D.              | $H_4P_2O_7$       |           |
| 58  | নিম্নলিখি     | তি ধাতুগুলির মধ্যে পৃ                      | থিবী প্ৰায়           | )<br>ক্রানটিব প্রাচয়( কে                              | मी १                      |                                                           |                 |                   |           |
|     |               |                                            |                       | ত কোনাতর ভ্রাতুব্য বে<br>ক্যালসিয়াম                   | C.                        | ্য্যাগনেসিয়াম<br>ম্যাগনেসিয়াম                           | D.              | সোডিয়াম          |           |
|     |               | 0. 2                                       |                       | 121 11 1911.4                                          | <u> </u>                  | - OCTOTOLINIM                                             | 1,7.            | 6.111.0.31.m      |           |



| 59; | নিম্নলি            | খত কক্ষকগুলির কো                                              | নটিতে yz           | তলে ইলেকট্রন পাও            | য়ার সম্ভ   | াব্যতা শৃন্য ?                        |                  |                                                                   |                   |          |
|-----|--------------------|---------------------------------------------------------------|--------------------|-----------------------------|-------------|---------------------------------------|------------------|-------------------------------------------------------------------|-------------------|----------|
|     | $\mathbf{A}_{tz}$  | $p_x$                                                         | B.                 | $p_{y}$                     | C.          | $p_z$                                 | D.               | $d_{yz}$                                                          |                   |          |
| 60. | PCl <sub>s</sub> - | এ P -এর কক্ষকগুলির                                            | া কি ধরণে          | ণর সংকরায়ণ গণ্য কর         | া হয় ?     |                                       |                  |                                                                   |                   |          |
|     | Α.                 |                                                               | B.                 | $dsp^3$                     | C.          | sp <sup>3</sup> d <sup>2</sup>        | D.               | d <sup>2</sup> sp <sup>2</sup>                                    |                   |          |
| 61. | কোন                | মৌলটির ক্ষেত্রে নিষ্ক্রি                                      | য় <b>ইলেক্</b> ট্ | ট্রন জোড়ের প্রভাব দে       | খা যাবে     | না ?                                  |                  |                                                                   |                   |          |
|     | A.                 | Sn                                                            | B.                 | Fe                          |             |                                       | D.               | In                                                                |                   |          |
| 62. | নীচের              | ৷ কোন অণুতে হাইড্ৰে                                           | াজেন ব্রীও         | দ বণ্ড উপস্থিত আছে <i>ং</i> | 2           |                                       |                  |                                                                   |                   |          |
|     | A.                 |                                                               | B.                 |                             |             | ডাইবোরেন                              | D.               | মিথানল                                                            |                   |          |
| 63. | একটি               | ম্যাঙ্গানাস লবণকে                                             | KNO,               | এবং কঠিন NaOH               | সহ উৎ       | গ্রাপে বিগলিত কর                      | ল Mn             | এর জারণ সংখ্যা                                                    | +2                | থেকে     |
|     |                    | র্ত্তত হয়ে হয়                                               | 3                  |                             |             |                                       |                  |                                                                   |                   |          |
|     | A.                 | +4                                                            | В.                 | +3                          | C.          | +6                                    | D.               | +7                                                                |                   |          |
| 64. | হিমো               | গ্লাবিনে যে ধাতব আয়                                          | য়ন উপস্থি         | ত সেটি হল -                 |             |                                       |                  | 9                                                                 |                   |          |
|     | A.                 | Fe <sup>2+</sup>                                              | B.                 | $Zn^{2+}$                   | C.          | Co <sup>2+</sup>                      |                  |                                                                   |                   |          |
| 65. | অর্থো-             | -ও প্যারা-হাইড্রোজেরে                                         | নর আছে             | ы                           |             | 97.1                                  |                  |                                                                   |                   |          |
|     | A.                 | একই রাসায়নিক ধ                                               | ৰ্ম — কিং          | ষ্ট্ৰ আলাদা ভৌত ধৰ্ম        | В.          | একই রাসায়নিক                         | ও ভৌত            | ধর্ম                                                              |                   |          |
|     | C.                 | একই ভৌত ধর্ম কি                                               | ন্তু আলাদ          | া রাসায়নিক ধর্ম            | D.          | আলাদা ভৌত ও                           | রাসায়নিব        | চ ধর্ম                                                            |                   |          |
| 66  | ന മ                | াণুর বন্ধন ক্রম হচ্ছে -                                       |                    |                             | 1           |                                       |                  |                                                                   |                   |          |
| 00, |                    | 2                                                             | В.                 | 2.5                         | C.          | 3                                     | D.               | 3.5                                                               |                   |          |
|     |                    | _                                                             |                    |                             |             |                                       |                  |                                                                   |                   |          |
| 67. |                    | মন C হ'ল<br>— — — — — — —                                     |                    |                             | _           |                                       |                  | অ্যাসকর্বিক অ্                                                    | n <del>Sur</del>  |          |
|     | A.                 | সাইট্রিক অ্যাসিড                                              | В.                 | ল্যাকাওক অ্যাসিড            | C.          | প্যারাসিটামল                          | D.               | অ্যাসকাবক অ্                                                      | )।।শঙ             |          |
| 68. |                    | অ্যালকেনকে ক্লোরিন<br>পাওয়া গেল। অ্যালবে                     |                    | ঙ্গ মিশ্রিত অবস্থায় অ      | তিবেগু      | নী রশ্মি দ্বারা বিক্রিং               | া করায়          | একটিমাত্র ক্লোরিন                                                 | প্রতিং            | <u> </u> |
|     | A.                 | প্রোপেন                                                       | В.                 | পেন্টেন                     | C.          | আইসোপেন্টেন                           | D.               | নিওপেন্টেন                                                        |                   |          |
| 69. | কিটো-              | -এনোল টটোমেরিসম্                                              | দেখা যায়          | না যার মধ্যে -              |             |                                       |                  |                                                                   |                   |          |
|     | A.                 | C <sub>6</sub> H <sub>5</sub> COC <sub>6</sub> H <sub>5</sub> |                    |                             | B.          | C <sub>6</sub> H <sub>5</sub> COCH=CI | $\mathbf{H}_{2}$ |                                                                   |                   |          |
|     | C.                 | C <sub>6</sub> H <sub>5</sub> COCH <sub>2</sub> CO            | CH <sub>3</sub>    |                             | D.          | CH <sub>3</sub> COCH <sub>2</sub> CO  | CH <sub>3</sub>  |                                                                   |                   |          |
| 70. |                    | নাইট্রোবেঞ্জিনকে ক্রমা<br>কি উৎপন্ন হয় ?                     | ন্ধয়ে বিভি        | ফুয়া করানো হয় ক্রমা       | ষ্বিয়ে (i) | NH <sub>4</sub> Cl/Zn dust            | এবং (ii)         | H <sub>2</sub> SO <sub>4</sub> /Na <sub>2</sub> Cr <sub>2</sub> C | ) <sub>7</sub> এর | সাথে     |
|     | A.                 | মেটা-ক্লোরো-নাইট                                              | ট্রাবেঞ্জিন        |                             | В.          | প্যারা-ক্লোরো-নাই                     | ট্রোবেঞ্জি       | 7                                                                 |                   |          |
|     | C.                 | নাইট্রোসোবেঞ্জিন                                              |                    |                             | D.          | বেঞ্জিন                               | , ,              | 7.77                                                              |                   |          |



| 71. | উত্তপ্ত জল $C_6H_5N_2$ $^+$ Cl $^-$ -র সাথে বিক্রিয়ায় উৎপন্ন করে                                                                                                           |                                                                |               |                  |                                |                       |                                  |                        |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|------------------|--------------------------------|-----------------------|----------------------------------|------------------------|--|
|     | A.                                                                                                                                                                           |                                                                |               | বেঞ্জাইল অ্যামিন | C.                             | ফেনল                  | Ď.                               | বে <b>ঞ্জালডিহাই</b> ড |  |
| 72. | আাসঞ্চি                                                                                                                                                                      | ারিন ইল                                                        |               |                  |                                |                       |                                  |                        |  |
|     | A. অ্যাসিটাইল স্যালিসাইলিক অ্যাসিড                                                                                                                                           |                                                                |               | В.               | বেল্লয়েল স্যালিসাইলিক অ্যাসিড |                       |                                  |                        |  |
|     | C.                                                                                                                                                                           | ক্লোরো বেশ্বয়িক অ্যাসিড                                       |               |                  | Ď.                             | অ্যানপ্রামিলিক অ      |                                  |                        |  |
|     |                                                                                                                                                                              | Cl :                                                           |               |                  |                                |                       |                                  |                        |  |
| 73. | X — P                                                                                                                                                                        | <sup>CI,</sup> →C <sub>2</sub> H,Cl<br><sup>CI,</sup> →CH,COCl |               |                  |                                |                       |                                  |                        |  |
|     | Xey                                                                                                                                                                          | <b>र</b> ल                                                     |               |                  |                                |                       |                                  |                        |  |
|     | À.                                                                                                                                                                           | . (C2H5)2O वर्गर CH3CO2H                                       |               |                  | B.                             | C, H, I dat C, H, CHO |                                  |                        |  |
|     | C.                                                                                                                                                                           | C2H2OH এবং CH                                                  | i,co,h        | İ                | Ď.                             | C2H3OH এবং (          | C <sub>2</sub> H <sub>5</sub> CH | O                      |  |
| 74. | নিম্নলিখিত যৌগগুলির কোনটিতে সবচেয়ে বেশী হাইড্রোজেন বন্ধনের প্রমাণ পাওয়া যায়?                                                                                              |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           | প্রপান — 1 — অল                                                |               |                  | Ħ.                             | প্ৰপান – 2 – অল       |                                  |                        |  |
|     | C.                                                                                                                                                                           | প্ৰপান –1, 2 – ভাইড                                            | <b>प्रद</b> ी |                  | D.                             | প্রপান – 1, 2, 3 –    | ট্রাইঅস                          |                        |  |
| 75. | KCN -এর সাথে AgCl -এর বিক্রিয়া ঘটানো হলে                                                                                                                                    |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           |                                                                |               |                  | В.                             | জটিল যৌগ তৈরী         | হয়                              |                        |  |
|     | Ĉ.                                                                                                                                                                           | double decomposition ঘটে                                       |               |                  | Ď.                             | কোন বিক্রিয়া হয়     | না                               |                        |  |
| 76. | অ্যাসিটোনকে HCl গ্যাস দ্বারা সম্পৃক্ত করে বিক্রিয়া করালে যে যৌগ উৎপন্ন হয় সেটি নীচের কোনটি !                                                                               |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           | অ্যাসিটোন অ্যালকোহল                                            |               |                  | B.                             | ফোরন                  |                                  |                        |  |
|     | C.                                                                                                                                                                           | মেসিটাইল অক্সাইড                                               |               |                  | D.                             | বেঞ্জিন               |                                  |                        |  |
| 77. | নিমের কোনটি কো-পলিমার (Co-polymer) -এর উদাইরণ ?                                                                                                                              |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           | বুনা-এস                                                        | B.            | টেফলন            | C.                             | পিউিসি                | D.                               | পদিশ্রপিটিন            |  |
| 78. | [A] ও [B] সনা <del>ত</del> কর নিম্নের পরিবর্তনে                                                                                                                              |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | $\begin{array}{c} 227 \\ 89 \end{array} Ac \xrightarrow{-\beta} \left[A\right] \xrightarrow{-\alpha} \left[B\right] \xrightarrow{-\alpha} Rn$                                |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           | Po, Rn                                                         | В.            | Th, Po           | C.                             | Ra, Th                | D.                               | Th, Ra                 |  |
| 79. | একটি মৃদু অ্যাসিড (যার বিয়োজন ধ্রুবক 10 <sup>-5</sup> ) কে জলীয় NaOH দ্রবণ দ্বারা টাইট্রেশন করা হচ্ছে। অ্যাসিডটির এক-তৃতীয়াংশ<br>যখন প্রশমিত হয়েছে, তখন মিশ্রণটির pH হবে |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           | $5 + \log 2 - \log 3$                                          | B.            | 5 – log 2        | C.                             | 5 – log 3             | D.                               | 5 – log 6              |  |
| 80. | একটি নমুনার (z = 22) তেজট্রিয়তা 10 বছরে 90% হ্রাস পায়। উক্ত নমুনার অর্ধায়ুকাল কত १                                                                                        |                                                                |               |                  |                                |                       |                                  |                        |  |
|     | A.                                                                                                                                                                           | 5 বছর                                                          | В.            | 2 বছর            | Ċ.                             | 3 বছর                 | D.                               | 10 বছর                 |  |

SPACE FOR ROUGH WORK

of a SIE 6

n den er en elsk eine in die er in der er er er er er A greature of the same of the Marie Ann Land College CONTRACTOR OF THE PERSON OF THE BEAUTIFUL TO BE AND ADDRESS OF and the second s angular page a record or their agent of - 11 Harry 2 all of the second an every larger figures and an exercise to consider the contract of the first contract of the state of the contract of THE RESERVE AND ADDRESS OF THE PARTY OF THE THE RESIDENCE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

30 1 0 mg/m > 0

and a last